Documentation
Regex
.
Data
.
SparseSet
.
Bijection
Search
return to top
source
Imports
Init
Imported by
Regex
.
Data
.
SparseSet
.
Bijection
.
inj
Regex
.
Data
.
SparseSet
.
Bijection
.
surj
Regex
.
Data
.
SparseSet
.
Bijection
.
bij
Fin
.
eq_of_ge
Fin
.
eq_of_not_lt
Regex
.
Data
.
SparseSet
.
Bijection
.
surj_of_inj
source
def
Regex
.
Data
.
SparseSet
.
Bijection
.
inj
{
α
:
Sort
u_1}
{
β
:
Sort
u_2}
(
f
:
α
→
β
)
:
Prop
Equations
Regex.Data.SparseSet.Bijection.inj
f
=
∀ (
x
y
:
α
),
f
x
=
f
y
→
x
=
y
Instances For
source
def
Regex
.
Data
.
SparseSet
.
Bijection
.
surj
{
α
:
Sort
u_1}
{
β
:
Sort
u_2}
(
f
:
α
→
β
)
:
Prop
Equations
Regex.Data.SparseSet.Bijection.surj
f
=
∀ (
y
:
β
),
∃
(
x
:
α
)
,
f
x
=
y
Instances For
source
def
Regex
.
Data
.
SparseSet
.
Bijection
.
bij
{
α
:
Sort
u_1}
{
β
:
Sort
u_2}
(
f
:
α
→
β
)
:
Prop
Equations
Regex.Data.SparseSet.Bijection.bij
f
=
(
Regex.Data.SparseSet.Bijection.inj
f
∧
Regex.Data.SparseSet.Bijection.surj
f
)
Instances For
source
theorem
Fin
.
eq_of_ge
{
n
:
Nat
}
{
i
:
Fin
(
n
+
1
)
}
(
h
:
↑
i
≥
n
)
:
i
=
⟨
n
,
⋯
⟩
source
theorem
Fin
.
eq_of_not_lt
{
n
:
Nat
}
{
i
:
Fin
(
n
+
1
)
}
(
h
:
¬
↑
i
<
n
)
:
i
=
⟨
n
,
⋯
⟩
source
theorem
Regex
.
Data
.
SparseSet
.
Bijection
.
surj_of_inj
{
n
:
Nat
}
(
f
:
Fin
n
→
Fin
n
)
(
h
:
inj
f
)
:
surj
f